18 research outputs found

    Priority-Based Content Delivery in the Internet of Vehicles through Named Data Networking

    Get PDF
    Named Data Networking (NDN) has been recently proposed as a prominent solution for content delivery in the Internet of Vehicles (IoV), where cars equipped with a variety of wireless communication technologies exchange information aimed to support safety, traffic efficiency, monitoring and infotainment applications. The main NDN tenets, i.e., name-based communication and in-network caching, perfectly fit the demands of time- and spatially-relevant content requested by vehicles regardless of their provenance. However, existing vehicular NDN solutions have not been targeted to wisely ensure prioritized traffic treatment based on the specific needs of heterogeneous IoV content types. In this work, we propose a holistic NDN solution that, according to the demands of data traffic codified in NDN content names, dynamically shapes the NDN forwarding decisions to ensure the appropriate prioritization. Specifically, our proposal first selects the outgoing interface(s) (i.e., 802.11, LTE) for NDN packets and then properly tunes the timing of the actual transmissions. Simulation results show that the proposed enhancements succeed in achieving differentiated traffic treatment, while keeping traffic load under control

    Enhancing the 3GPP V2X architecture with information-centric networking

    Get PDF
    Vehicle-to-everything (V2X) communications allow a vehicle to interact with other vehicles and with communication parties in its vicinity (e.g., road-side units, pedestrian users, etc.) with the primary goal of making the driving and traveling experience safer, smarter and more comfortable. A wide set of V2X-tailored specifications have been identified by the Third Generation Partnership Project (3GPP) with focus on the design of architecture enhancements and a flexible air interface to ensure ultra-low latency, highly reliable and high-throughput connectivity as the ultimate aim. This paper discusses the potential of leveraging Information-Centric Networking (ICN) principles in the 3GPP architecture for V2X communications. We consider Named Data Networking (NDN) as reference ICN architecture and elaborate on the specific design aspects, required changes and enhancements in the 3GPP V2X architecture to enable NDN-based data exchange as an alternative/complementary solution to traditional IP networking, which barely matches the dynamics of vehicular environments. Results are provided to showcase the performance improvements of the NDN-based proposal in disseminating content requests over the cellular network against a traditional networking solution119sem informaçãosem informaçã

    Named Data Networking: a Natural Design for Data Collection in Wireless Sensor Networks

    Get PDF
    International audienceNamed Data Networking (NDN) is a promising paradigm for the future Internet architecture that also opens new perspectives in the way data can be retrieved in Wireless Sensor Networks (WSNs). In this paper, we explore the potentialities of the NDN paradigm applied to WSNs and propose enhancements to the NDN forwarding strategy by including principles inspired by traditional data-centric routing schemes. Results achieved through the ndnSIM simulator confirm the viability and effectiveness of the proposal

    Fog Computing in IoT Smart Environments via Named Data Networking: A Study on Service Orchestration Mechanisms

    Get PDF
    [EN] By offering low-latency and context-aware services, fog computing will have a peculiar role in the deployment of Internet of Things (IoT) applications for smart environments. Unlike the conventional remote cloud, for which consolidated architectures and deployment options exist, many design and implementation aspects remain open when considering the latest fog computing paradigm. In this paper, we focus on the problems of dynamically discovering the processing and storage resources distributed among fog nodes and, accordingly, orchestrating them for the provisioning of IoT services for smart environments. In particular, we show how these functionalities can be effectively supported by the revolutionary Named Data Networking (NDN) paradigm. Originally conceived to support named content delivery, NDN can be extended to request and provide named computation services, with NDN nodes acting as both content routers and in-network service executors. To substantiate our analysis, we present an NDN fog computing framework with focus on a smart campus scenario, where the execution of IoT services is dynamically orchestrated and performed by NDN nodes in a distributed fashion. A simulation campaign in ndnSIM, the reference network simulator of the NDN research community, is also presented to assess the performance of our proposal against state-of-the-art solutions. Results confirm the superiority of the proposal in terms of service provisioning time, paid at the expenses of a slightly higher amount of traffic exchanged among fog nodes.This research was partially funded by the Italian Government under grant PON ARS01_00836 for the COGITO (A COGnItive dynamic sysTem to allOw buildings to learn and adapt) PON Project.Amadeo, M.; Ruggeri, G.; Campolo, C.; Molinaro, A.; Loscri, V.; Tavares De Araujo Cesariny Calafate, CM. (2019). Fog Computing in IoT Smart Environments via Named Data Networking: A Study on Service Orchestration Mechanisms. Future Internet. 11(11):1-21. https://doi.org/10.3390/fi11110222S1211111Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431-440. doi:10.1016/j.bushor.2015.03.008Cicirelli, F., Guerrieri, A., Spezzano, G., Vinci, A., Briante, O., Iera, A., & Ruggeri, G. (2018). Edge Computing and Social Internet of Things for Large-Scale Smart Environments Development. IEEE Internet of Things Journal, 5(4), 2557-2571. doi:10.1109/jiot.2017.2775739Chiang, M., & Zhang, T. (2016). Fog and IoT: An Overview of Research Opportunities. IEEE Internet of Things Journal, 3(6), 854-864. doi:10.1109/jiot.2016.2584538Openfog Consortiumhttp://www.openfogconsortium.org/Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, kc, Crowley, P., … Zhang, B. (2014). Named data networking. ACM SIGCOMM Computer Communication Review, 44(3), 66-73. doi:10.1145/2656877.2656887Amadeo, M., Ruggeri, G., Campolo, C., & Molinaro, A. (2019). IoT Services Allocation at the Edge via Named Data Networking: From Optimal Bounds to Practical Design. IEEE Transactions on Network and Service Management, 16(2), 661-674. doi:10.1109/tnsm.2019.2900274ndnSIM 2.0: A New Version of the NDN Simulator for NS-3https://www.researchgate.net/profile/Spyridon_Mastorakis/publication/281652451_ndnSIM_20_A_new_version_of_the_NDN_simulator_for_NS-3/links/5b196020a6fdcca67b63660d/ndnSIM-20-A-new-version-of-the-NDN-simulator-for-NS-3.pdfAhlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., & Ohlman, B. (2012). A survey of information-centric networking. IEEE Communications Magazine, 50(7), 26-36. doi:10.1109/mcom.2012.6231276NFD Developer’s Guidehttps://named-data.net/wp-content/uploads/2016/03/ndn-0021-diff-5..6-nfd-developer-guide.pdfPiro, G., Amadeo, M., Boggia, G., Campolo, C., Grieco, L. A., Molinaro, A., & Ruggeri, G. (2019). Gazing into the Crystal Ball: When the Future Internet Meets the Mobile Clouds. IEEE Transactions on Cloud Computing, 7(1), 210-223. doi:10.1109/tcc.2016.2573307Zhang, G., Li, Y., & Lin, T. (2013). Caching in information centric networking: A survey. Computer Networks, 57(16), 3128-3141. doi:10.1016/j.comnet.2013.07.007Yi, C., Afanasyev, A., Moiseenko, I., Wang, L., Zhang, B., & Zhang, L. (2013). A case for stateful forwarding plane. Computer Communications, 36(7), 779-791. doi:10.1016/j.comcom.2013.01.005Amadeo, M., Briante, O., Campolo, C., Molinaro, A., & Ruggeri, G. (2016). Information-centric networking for M2M communications: Design and deployment. Computer Communications, 89-90, 105-116. doi:10.1016/j.comcom.2016.03.009Tourani, R., Misra, S., Mick, T., & Panwar, G. (2018). Security, Privacy, and Access Control in Information-Centric Networking: A Survey. IEEE Communications Surveys & Tutorials, 20(1), 566-600. doi:10.1109/comst.2017.2749508Ndn-ace: Access Control for Constrained Environments over Named Data Networkinghttp://new.named-data.net/wp-content/uploads/2015/12/ndn-0036-1-ndn-ace.pdfZhang, Z., Yu, Y., Zhang, H., Newberry, E., Mastorakis, S., Li, Y., … Zhang, L. (2018). An Overview of Security Support in Named Data Networking. IEEE Communications Magazine, 56(11), 62-68. doi:10.1109/mcom.2018.1701147Cisco White Paperhttps://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdfAazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying Fog Computing in Industrial Internet of Things and Industry 4.0. IEEE Transactions on Industrial Informatics, 14(10), 4674-4682. doi:10.1109/tii.2018.2855198Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., & Chen, S. (2016). Vehicular Fog Computing: A Viewpoint of Vehicles as the Infrastructures. IEEE Transactions on Vehicular Technology, 65(6), 3860-3873. doi:10.1109/tvt.2016.2532863Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., … Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289-330. doi:10.1016/j.sysarc.2019.02.009Baktir, A. C., Ozgovde, A., & Ersoy, C. (2017). How Can Edge Computing Benefit From Software-Defined Networking: A Survey, Use Cases, and Future Directions. IEEE Communications Surveys & Tutorials, 19(4), 2359-2391. doi:10.1109/comst.2017.2717482Duan, Q., Yan, Y., & Vasilakos, A. V. (2012). A Survey on Service-Oriented Network Virtualization Toward Convergence of Networking and Cloud Computing. IEEE Transactions on Network and Service Management, 9(4), 373-392. doi:10.1109/tnsm.2012.113012.120310Amadeo, M., Campolo, C., & Molinaro, A. (2016). NDNe: Enhancing Named Data Networking to Support Cloudification at the Edge. IEEE Communications Letters, 20(11), 2264-2267. doi:10.1109/lcomm.2016.2597850Krol, M., Marxer, C., Grewe, D., Psaras, I., & Tschudin, C. (2018). Open Security Issues for Edge Named Function Environments. IEEE Communications Magazine, 56(11), 69-75. doi:10.1109/mcom.2018.170111711801-2:2017 Information Technology—Generic Cabling for Customer Premiseshttps://www.iso.org/standard/66183.htm

    Enhancing the 3GPP V2X architecture with information-centric networking

    No full text
    Vehicle-to-everything (V2X) communications allow a vehicle to interact with other vehicles and with communication parties in its vicinity (e.g., road-side units, pedestrian users, etc.) with the primary goal of making the driving and traveling experience safer, smarter and more comfortable. A wide set of V2X-tailored specifications have been identified by the Third Generation Partnership Project (3GPP) with focus on the design of architecture enhancements and a flexible air interface to ensure ultra-low latency, highly reliable and high-throughput connectivity as the ultimate aim. This paper discusses the potential of leveraging Information-Centric Networking (ICN) principles in the 3GPP architecture for V2X communications. We consider Named Data Networking (NDN) as reference ICN architecture and elaborate on the specific design aspects, required changes and enhancements in the 3GPP V2X architecture to enable NDN-based data exchange as an alternative/complementary solution to traditional IP networking, which barely matches the dynamics of vehicular environments. Results are provided to showcase the performance improvements of the NDN-based proposal in disseminating content requests over the cellular network against a traditional networking solution

    A Literature Review on Caching Transient Contents in Vehicular Named Data Networking

    No full text
    Vehicular Named Data Networking (VNDN) is a revolutionary information-centric architecture specifically conceived for vehicular networks and characterized by name-based forwarding and in-network caching. So far, a variety of caching schemes have been proposed for VNDN that work in presence of static Data packets, like traditional Internet contents. However, with the advent of Internet of Things (IoT) and Internet of Vehicles (IoV) applications, large sets of vehicular contents are expected to be transient, i.e., they are characterized by a limited lifetime and become invalid after the latter expires. This is the case of information related to road traffic or parking lot availability, which can change after a few minutes—or even after a few seconds—it has been generated at the source. The transiency of contents may highly influence the network performance, including the gain of in-network caching. Therefore, in this paper, we consider the dissemination of transient contents in vehicular networks and its effects on VNDN caching. By providing a detailed review of related work, we identify the main challenges and objectives when caching transient contents, e.g., to avoid cache inconsistency, to minimize the Age of Information (AoI) and the retrieval latency, and the main strategies to fulfill them. We scan the existing caching and replacement policies specifically designed for transient contents in VNDN and, finally, we outline interesting research perspectives

    Fog Computing in IoT Smart Environments via Named Data Networking: A Study on Service Orchestration Mechanisms

    No full text
    By offering low-latency and context-aware services, fog computing will have a peculiar role in the deployment of Internet of Things (IoT) applications for smart environments. Unlike the conventional remote cloud, for which consolidated architectures and deployment options exist, many design and implementation aspects remain open when considering the latest fog computing paradigm. In this paper, we focus on the problems of dynamically discovering the processing and storage resources distributed among fog nodes and, accordingly, orchestrating them for the provisioning of IoT services for smart environments. In particular, we show how these functionalities can be effectively supported by the revolutionary Named Data Networking (NDN) paradigm. Originally conceived to support named content delivery, NDN can be extended to request and provide named computation services, with NDN nodes acting as both content routers and in-network service executors. To substantiate our analysis, we present an NDN fog computing framework with focus on a smart campus scenario, where the execution of IoT services is dynamically orchestrated and performed by NDN nodes in a distributed fashion. A simulation campaign in ndnSIM, the reference network simulator of the NDN research community, is also presented to assess the performance of our proposal against state-of-the-art solutions. Results confirm the superiority of the proposal in terms of service provisioning time, paid at the expenses of a slightly higher amount of traffic exchanged among fog nodes

    Enhancing the 3GPP V2X Architecture with Information-Centric Networking

    No full text
    Vehicle-to-everything (V2X) communications allow a vehicle to interact with other vehicles and with communication parties in its vicinity (e.g., road-side units, pedestrian users, etc.) with the primary goal of making the driving and traveling experience safer, smarter and more comfortable. A wide set of V2X-tailored specifications have been identified by the Third Generation Partnership Project (3GPP) with focus on the design of architecture enhancements and a flexible air interface to ensure ultra-low latency, highly reliable and high-throughput connectivity as the ultimate aim. This paper discusses the potential of leveraging Information-Centric Networking (ICN) principles in the 3GPP architecture for V2X communications. We consider Named Data Networking (NDN) as reference ICN architecture and elaborate on the specific design aspects, required changes and enhancements in the 3GPP V2X architecture to enable NDN-based data exchange as an alternative/complementary solution to traditional IP networking, which barely matches the dynamics of vehicular environments. Results are provided to showcase the performance improvements of the NDN-based proposal in disseminating content requests over the cellular network against a traditional networking solution

    Popularity-Aware Closeness Based Caching in NDN Edge Networks

    No full text
    By enabling name-based routing and ubiquitous in-network caching, Named Data Networking (NDN) is a promising network architecture for sixth generation (6G) edge network infrastructures. However, the performance of content retrieval largely depends on the selected caching strategy, which is implemented in a distributed fashion by each NDN node. Previous research showed the effectiveness of caching decisions based on content popularity and network topology information. This paper presents a new distributed caching strategy for NDN edge networks based on a metric called popularity-aware closeness (PaC), which measures the proximity of the potential cacher to the majority of requesters of a certain content. After identifying the most popular contents, the strategy caches them in the available edge nodes that guarantee the higher PaC. Achieved simulation results show that the proposed strategy outperforms other benchmark schemes, in terms of reduced content retrieval delay and exchanged data traffic

    The Internet of Things for Smart Environments

    No full text
    By leveraging the global interconnection of billions of tiny smart objects, the Internet of Things (IoT) paradigm is the main enabler of smart environments, ranging from smart cities to building automation, smart transportation, smart grids, and healthcare [...
    corecore